(i) Sketch the graph of the function: $$ f(x) = \begin{cases} 1+x, & x < -1 \\ x^2, & -1 \le x \le 1 \\ 2-x, & x \ge 1 \end{cases} $$ and use it to determine the values of "a" for which \( \lim_{x \to a} f(x) \) exists.
(ii) Differentiate \( y = (2x+1)^5(x^3-x+1)^4 \).
Part (i): Graph and Limits
1. Graph Sketch:
Part (ii): Differentiation
We use the Product Rule: \( \frac{d}{dx}(uv) = u'v + uv' \).
(i) If \( x^2 + y^2 = 25 \), then find \( \frac{dy}{dx} \) and also find an equation of the tangent line to the curve at the point (3, 4).
(ii) If \( f(x) = xe^x \) then find \( f'(x) \). Also find the n-th derivative \( f^n(x) \).
Part (i): Implicit Differentiation and Tangent Line
1. Find \( \frac{dy}{dx} \): Differentiate \( x^2 + y^2 = 25 \) with respect to \( x \).
$$ 2x + 2y \frac{dy}{dx} = 0 $$
$$ 2y \frac{dy}{dx} = -2x $$
$$ \frac{dy}{dx} = \frac{-2x}{2y} = -\frac{x}{y} $$
2. Find Tangent Line at (3, 4):
First, find the slope (m) at (3, 4):
$$ m = \frac{dy}{dx} \Big|_{(3,4)} = -\frac{3}{4} $$
Using the point-slope form \( y - y_1 = m(x - x_1) \):
$$ y - 4 = -\frac{3}{4}(x - 3) $$
Multiply by 4:
$$ 4(y - 4) = -3(x - 3) $$
$$ 4y - 16 = -3x + 9 $$
$$ 3x + 4y = 25 $$
Part (ii): n-th Derivative
We find the first few derivatives to identify a pattern.
(i) For what values of \( a \) and \( b \), is $$ f(x) = \begin{cases} ax-b, & x \le -1 \\ 4x^3-12x^2+1, & -1 < x < 1 \\ 3, & x \ge 1 \end{cases} $$ continuous at every \( x \)?
(ii) Find \( \frac{dy}{dx} \), if \( y = \frac{\sec x}{1 + \tan x} \).
Part (i): Continuity
For \( f(x) \) to be continuous everywhere, it must be continuous at the "break" points \( x = -1 \) and \( x = 1 \).
1. Continuity at \( x = -1 \):
$$ \lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} (ax - b) = a(-1) - b = -a - b $$
$$ \lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} (4x^3 - 12x^2 + 1) = 4(-1)^3 - 12(-1)^2 + 1 = -4 - 12 + 1 = -15 $$
For continuity, we must have: \( -a - b = -15 \) or \( a + b = 15 \).
2. Continuity at \( x = 1 \):
$$ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (4x^3 - 12x^2 + 1) = 4(1)^3 - 12(1)^2 + 1 = 4 - 12 + 1 = -7 $$
$$ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (3) = 3 $$
The left-hand limit (-7) does not equal the right-hand limit (3).
Part (ii): Differentiation
We use the Quotient Rule: \( \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2} \).
(i) Find the absolute maximum and absolute minimum value of the function \( f(x) = 3x^4 \), on \( [-2, 3] \).
(ii) Evaluate (1) \( \frac{d}{dx}(3x^5 \log x) \) and (2) \( \frac{d}{dx}\left(\frac{x^3}{3x-2}\right) \).
(iii) Find \( \frac{dy}{dx} \), if \( y = (\sin x)^{\cos x} \).
Part (i): Absolute Extrema
1. Find critical points: \( f'(x) = 12x^3 \).
Set \( f'(x) = 0 \implies 12x^3 = 0 \implies x = 0 \).
2. Test endpoints and critical points: We test the values \( x = -2 \), \( x = 3 \) (endpoints) and \( x = 0 \) (critical point) in the original function.
Part (ii-1): Derivative (Product Rule)
\( \frac{d}{dx}(3x^5 \ln x) \) (Assuming log x is natural log, ln x)
$$ = \left[\frac{d}{dx}(3x^5)\right] \cdot (\ln x) + (3x^5) \cdot \left[\frac{d}{dx}(\ln x)\right] $$
$$ = (15x^4)(\ln x) + (3x^5)\left(\frac{1}{x}\right) $$
$$ = 15x^4 \ln x + 3x^4 = 3x^4(5 \ln x + 1) $$
Part (ii-2): Derivative (Quotient Rule)
\( \frac{d}{dx}\left( \frac{x^3}{3x-2} \right) \)
$$ = \frac{(3x^2)(3x-2) - (x^3)(3)}{(3x-2)^2} $$
$$ = \frac{9x^3 - 6x^2 - 3x^3}{(3x-2)^2} $$
$$ = \frac{6x^3 - 6x^2}{(3x-2)^2} = \frac{6x^2(x - 1)}{(3x - 2)^2} $$
Part (iii): Logarithmic Differentiation
Given \( y = (\sin x)^{\cos x} \).
1. Take the natural log of both sides:
$$ \ln y = \ln( (\sin x)^{\cos x} ) $$
$$ \ln y = (\cos x) \cdot \ln(\sin x) $$
2. Differentiate implicitly w.r.t. \( x \) (using Product Rule on the right):
$$ \frac{1}{y} \frac{dy}{dx} = \left[\frac{d}{dx}(\cos x)\right] \cdot \ln(\sin x) + (\cos x) \cdot \left[\frac{d}{dx}(\ln(\sin x))\right] $$
$$ \frac{1}{y} \frac{dy}{dx} = (-\sin x) \ln(\sin x) + (\cos x) \cdot \left(\frac{1}{\sin x}\right) \cdot (\cos x) $$
$$ \frac{1}{y} \frac{dy}{dx} = -\sin x \ln(\sin x) + \frac{\cos^2 x}{\sin x} $$
3. Solve for \( \frac{dy}{dx} \) by multiplying by \( y \):
$$ \frac{dy}{dx} = y \left[ -\sin x \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right] $$
$$ \frac{dy}{dx} = (\sin x)^{\cos x} \left[ -\sin x \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right] $$
(i) Find critical value of the function \( f(x) = \frac{x-1}{x^2-x+1} \).
(ii) Find \( \frac{dy}{dx} \), if \( y = \frac{\sec x}{1 + \tan x} \).
Part (i): Critical Values
Critical values occur where \( f'(x) = 0 \) or \( f'(x) \) is undefined.
1. Find \( f'(x) \) using the Quotient Rule:
$$ f'(x) = \frac{(1)(x^2-x+1) - (x-1)(2x-1)}{(x^2-x+1)^2} $$
Expand the numerator:
$$ f'(x) = \frac{(x^2-x+1) - (2x^2 - 3x + 1)}{(x^2-x+1)^2} $$
$$ f'(x) = \frac{x^2 - x + 1 - 2x^2 + 3x - 1}{(x^2-x+1)^2} $$
$$ f'(x) = \frac{-x^2 + 2x}{(x^2-x+1)^2} $$
2. Find where \( f'(x) = 0 \):
$$ -x^2 + 2x = 0 \implies -x(x - 2) = 0 $$
This gives \( x = 0 \) and \( x = 2 \).
3. Find where \( f'(x) \) is undefined:
This occurs if the denominator is zero. \( x^2-x+1 = 0 \).
Using the discriminant (\( b^2-4ac \)): \( (-1)^2 - 4(1)(1) = 1 - 4 = -3 \). Since it's negative, the denominator has no real roots and is never zero.
Part (ii): Differentiation
Note: This is identical to Question 3(ii).
We use the Quotient Rule:For \( f(x) = 2x^3 + 3x^2 - 36x \), find:
(i) Critical points.
(ii) On what interval is f increasing or decreasing?
(iii) At what points if any, does f assume local maximum and minimum values?
(iv) Find intervals of concavity and the inflection points.
$$ f(x) = 2x^3 + 3x^2 - 36x $$ $$ f'(x) = 6x^2 + 6x - 36 = 6(x^2 + x - 6) = 6(x+3)(x-2) $$ $$ f''(x) = 12x + 6 = 6(2x+1) $$
(i) Critical points:
Set \( f'(x) = 0 \implies 6(x+3)(x-2) = 0 \).
The critical points are \( x = -3 \) and \( x = 2 \).
(ii) Increasing/Decreasing: We test intervals around the critical points.
(iii) Local Max/Min:
(iv) Concavity/Inflection Points:
Set \( f''(x) = 0 \implies 12x + 6 = 0 \implies x = -1/2 \).
For \( f(x) = 2 + 2x^2 - x^4 \), find:
(i) Critical points.
(ii) On what interval is f increasing or decreasing?
(iii) At what points if any, does f assume local maximum and minimum values?
(iv) Find the intervals of concavity and the inflection points.
$$ f(x) = 2 + 2x^2 - x^4 $$ $$ f'(x) = 4x - 4x^3 = 4x(1 - x^2) = 4x(1-x)(1+x) $$ $$ f''(x) = 4 - 12x^2 = 4(1 - 3x^2) $$
(i) Critical points:
Set \( f'(x) = 0 \implies 4x(1-x)(1+x) = 0 \).
The critical points are \( x = 0 \), \( x = 1 \), and \( x = -1 \).
(ii) Increasing/Decreasing:
(iii) Local Max/Min:
(iv) Concavity/Inflection Points:
Set \( f''(x) = 0 \implies 4(1 - 3x^2) = 0 \implies x^2 = 1/3 \implies x = \pm 1/\sqrt{3} \).
(i) Find the values of \( a \) and \( b \) that make \( f \) continuous on \( (-\infty, \infty) \) if: $$ f(x) = \begin{cases} \frac{x^2-4}{x-2}, & x < 2 \\ ax^2-bx+3, & 2 \le x \le 3 \\ 2x-a+b, & x \ge 3 \end{cases} $$ (Note: Corrected typo from \( (x^i-b_i)/(x-2) \) to \( (x^2-4)/(x-2) \))
(ii) Find \( \frac{dy}{dx} \) if \( y = x^2 e^{2x} (x^2+1)^4 \).
Part (i): Continuity
Note: The term \( (x^i-b_i)/(x-2) \) is assumed to be the common limit problem \( (x^2-4)/(x-2) \), which means \( f(x) = x+2 \) for \( x < 2 \).
1. Continuity at \( x = 2 \): $$ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{x^2-4}{x-2} = \lim_{x \to 2^-} (x+2) = 4 $$ $$ \lim_{x \to 2^+} f(x) = f(2) = a(2)^2 - b(2) + 3 = 4a - 2b + 3 $$ Equation 1: \( 4a - 2b + 3 = 4 \) → \( 4a - 2b = 1 \)
Part (ii): Logarithmic Differentiation
Given \( y = x^2 e^{2x} (x^2+1)^4 \)
1. Take the natural log of both sides:
$$ \ln y = \ln(x^2) + \ln(e^{2x}) + \ln((x^2+1)^4) $$
$$ \ln y = 2 \ln x + 2x + 4 \ln(x^2+1) $$
2. Differentiate implicitly w.r.t. \( x \):
$$ \frac{1}{y} \frac{dy}{dx} = \frac{2}{x} + 2 + 4 \cdot \frac{1}{x^2+1} \cdot 2x $$
$$ \frac{1}{y} \frac{dy}{dx} = \frac{2}{x} + 2 + \frac{8x}{x^2+1} $$
3. Solve for \( \frac{dy}{dx} \) by multiplying by \( y \):
For \( f(x) = x^4 - 2x^3 + 3 \), find:
(i) Critical points.
(ii) On what interval is f increasing or decreasing?
(iii) At what points if any, does f assume local maximum and minimum values?
(iv) Find the intervals of concavity and the inflection points.
$$ f(x) = x^4 - 2x^3 + 3 $$ $$ f'(x) = 4x^3 - 6x^2 = 2x^2(2x - 3) $$ $$ f''(x) = 12x^2 - 12x = 12x(x - 1) $$
(i) Critical points:
Set \( f'(x) = 0 \implies 2x^2(2x - 3) = 0 \).
The critical points are \( x = 0 \) and \( x = 3/2 \).
(ii) Increasing/Decreasing:
(iii) Local Max/Min:
(iv) Concavity/Inflection Points:
Set \( f''(x) = 0 \implies 12x(x - 1) = 0 \implies x = 0 \) and \( x = 1 \).
For \( f(x) = \sin x + \cos x \), \( [0, 2\pi] \), find:
(i) Critical points.
(ii) On what interval is f increasing or decreasing?
(iii) At what points if any, does f assume local maximum and minimum values?
(iv) Find the intervals of concavity and the inflection points.
$$ f(x) = \sin x + \cos x $$ $$ f'(x) = \cos x - \sin x $$ $$ f''(x) = -\sin x - \cos x $$
(i) Critical points:
Set \( f'(x) = 0 \implies \cos x - \sin x = 0 \implies \cos x = \sin x \implies \tan x = 1 \).
In the interval \( [0, 2\pi] \), this occurs at \( x = \pi/4 \) and \( x = 5\pi/4 \).
(ii) Increasing/Decreasing:
(iii) Local Max/Min:
(iv) Concavity/Inflection Points:
Set \( f''(x) = 0 \implies -\sin x - \cos x = 0 \implies \tan x = -1 \).
In the interval \( [0, 2\pi] \), this occurs at \( x = 3\pi/4 \) and \( x = 7\pi/4 \).