Find the eigenvalues and eigenvectors of the matrix: $$ A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix} $$
Step 1: Find the characteristic equation.
The characteristic equation is \( |A - \lambda I| = 0 \).
Expanding along the second row (R2):
$$ (2-\lambda) \left[ (2-\lambda)(2-\lambda) - (1)(1) \right] = 0 $$
$$ (2-\lambda) [ (2-\lambda)^2 - 1 ] = 0 $$
$$ (2-\lambda) [ \lambda^2 - 4\lambda + 4 - 1 ] = 0 $$
$$ (2-\lambda) (\lambda^2 - 4\lambda + 3) = 0 $$
$$ (2-\lambda) (\lambda - 1) (\lambda - 3) = 0 $$
The eigenvalues (\(\lambda\)) are 1, 2, 3.
Step 2: Find the eigenvectors for each eigenvalue.
The eigenvector \( X = [x_1, x_2, x_3]^T \) is found by solving \( (A - \lambda I)X = 0 \).
Case 1: \(\lambda = 1\)
$$ (A - 1I)X = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $$
Equations:
1. \( x_1 + x_3 = 0 \Rightarrow x_1 = -x_3 \)
2. \( x_2 = 0 \)
Let \( x_3 = k \). Then \( x_1 = -k, x_2 = 0 \).
Eigenvector \( X_1 = k \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \).
Case 2: \(\lambda = 2\)
$$ (A - 2I)X = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $$
Equations:
1. \( x_3 = 0 \)
2. \( x_1 = 0 \)
\( x_2 \) is a free variable. Let \( x_2 = k \).
Eigenvector \( X_2 = k \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \).
Case 3: \(\lambda = 3\)
$$ (A - 3I)X = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $$
Equations:
1. \( -x_1 + x_3 = 0 \Rightarrow x_1 = x_3 \)
2. \( -x_2 = 0 \Rightarrow x_2 = 0 \)
Let \( x_3 = k \). Then \( x_1 = k \).
Eigenvector \( X_3 = k \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \).
Using Cayley-Hamilton theorem, find \( A^4 \) if: $$ A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix} $$
Step 1: Find the characteristic equation of A.
The equation is \( \lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0 \).
Step 2: Apply the Cayley-Hamilton Theorem.
Matrix A satisfies its own characteristic equation:
\( A^3 - A^2 - 18A - 30I = 0 \)
Thus, \( A^3 = A^2 + 18A + 30I \).
Step 3: Express \( A^4 \) in terms of lower powers.
Multiply by A:
\( A^4 = A(A^3) = A(A^2 + 18A + 30I) \)
\( A^4 = A^3 + 18A^2 + 30A \)
Substitute \( A^3 \) back:
\( A^4 = (A^2 + 18A + 30I) + 18A^2 + 30A \)
\( A^4 = 19A^2 + 48A + 30I \)
Step 4: Calculate \( A^2 \).
$$ A^2 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix} $$
$$ = \begin{bmatrix} 1+4+9 & 2-2+3 & 3+8+3 \\ 2-2+12 & 4+1+4 & 6-4+4 \\ 3+2+3 & 6-1+1 & 9+4+1 \end{bmatrix} = \begin{bmatrix} 14 & 3 & 14 \\ 12 & 9 & 6 \\ 8 & 6 & 14 \end{bmatrix} $$
Step 5: Calculate \( A^4 \).
$$ A^4 = 19 \begin{bmatrix} 14 & 3 & 14 \\ 12 & 9 & 6 \\ 8 & 6 & 14 \end{bmatrix} + 48 \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix} + 30 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $$
Reduce the quadratic form \( 3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3 \) to canonical form through an orthogonal transformation. Also find its nature, index, signature.
Step 1: Write the matrix of the quadratic form.
$$ A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix} $$
Step 2: Find the eigenvalues of A.
\( \lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0 \)
Step 3: Write the canonical form.
Formula: \( \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 \)
Step 4: Determine nature, index, and signature.
Reduce the quadratic form \( 6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4xz \) into a canonical form through an orthogonal reduction.
Step 1: Write the matrix of the quadratic form.
$$ A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} $$
Step 2: Find the eigenvalues of A.
\( \lambda^3 - S_1\lambda^2 + S_2\lambda - S_3 = 0 \)
Step 3: Write the canonical form.
Find the eigenvalues and eigenvectors of a matrix: $$ A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix} $$
Step 1: Find the characteristic equation.
Step 2: Find eigenvectors \( (A - \lambda I)X = 0 \).
Case 1: \(\lambda = 1\)
$$ \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ -7 & 2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 $$
\( x_1 + 2x_2 = 0 \Rightarrow x_1 = -2x_2 \)
\( 2x_1 + x_3 = 0 \Rightarrow x_3 = -2x_1 = 4x_2 \)
Let \( x_2 = k \). Eigenvector \( X_1 = k \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} \).
Case 2: \(\lambda = 3\)
$$ \begin{bmatrix} -1 & 2 & 0 \\ 2 & -2 & 1 \\ -7 & 2 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 $$
\( -x_1 + 2x_2 = 0 \Rightarrow x_1 = 2x_2 \)
\( 2x_1 - 2x_2 + x_3 = 0 \Rightarrow 4x_2 - 2x_2 + x_3 = 0 \Rightarrow x_3 = -2x_2 \)
Let \( x_2 = k \). Eigenvector \( X_2 = k \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} \).
Case 3: \(\lambda = -4\)
$$ \begin{bmatrix} 6 & 2 & 0 \\ 2 & 5 & 1 \\ -7 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 $$
\( 6x_1 + 2x_2 = 0 \Rightarrow x_2 = -3x_1 \)
\( 2x_1 + 5x_2 + x_3 = 0 \Rightarrow 2x_1 - 15x_1 + x_3 = 0 \Rightarrow x_3 = 13x_1 \)
Let \( x_1 = k \). Eigenvector \( X_3 = k \begin{bmatrix} 1 \\ -3 \\ 13 \end{bmatrix} \).
Using Cayley-Hamilton theorem find the inverse of the matrix: $$ A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} $$
Step 1: Characteristic Equation.
Step 2: Apply Cayley-Hamilton.
\( A^3 - 11A^2 - 4A + I = 0 \)
Step 3: Find \( A^{-1} \).
Multiply by \( A^{-1} \):
\( A^2 - 11A - 4I + A^{-1} = 0 \)
\( A^{-1} = -A^2 + 11A + 4I \)
Step 4: Calculate \( A^2 \).
$$ A^2 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} $$
$$ = \begin{bmatrix} 1+4+9 & 2+8+15 & 3+10+18 \\ 2+8+15 & 4+16+25 & 6+20+30 \\ 3+10+18 & 6+20+30 & 9+25+36 \end{bmatrix} = \begin{bmatrix} 14 & 25 & 31 \\ 25 & 45 & 56 \\ 31 & 56 & 70 \end{bmatrix} $$
Step 5: Calculate \( A^{-1} \).
$$ A^{-1} = -\begin{bmatrix} 14 & 25 & 31 \\ 25 & 45 & 56 \\ 31 & 56 & 70 \end{bmatrix} + 11\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} + 4\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $$
$$ = \begin{bmatrix} -14+11+4 & -25+22+0 & -31+33+0 \\ -25+22+0 & -45+44+4 & -56+55+0 \\ -31+33+0 & -56+55+0 & -70+66+4 \end{bmatrix} $$
Diagonalise the matrix by Orthogonality transformation: $$ A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix} $$
Step 1: Find Eigenvalues.
\( S_1 = 18 \)
\( S_2 = (21-16) + (24-4) + (56-36) = 5 + 20 + 20 = 45 \)
\( S_3 = 8(5) + 6(-10) + 2(10) = 40 - 60 + 20 = 0 \)
Eq: \( \lambda^3 - 18\lambda^2 + 45\lambda = 0 \Rightarrow \lambda(\lambda^2 - 18\lambda + 45) = 0 \).
Factors: \( \lambda(\lambda - 3)(\lambda - 15) = 0 \).
Eigenvalues: 0, 3, 15.
Step 2: Find Eigenvectors.
For \(\lambda = 0\):
Using cross-multiplication on first two rows of A:
\( \frac{x_1}{24-14} = \frac{x_2}{-12+32} = \frac{x_3}{56-36} \Rightarrow \frac{x_1}{10} = \frac{x_2}{20} = \frac{x_3}{20} \)
\( X_1 = [1, 2, 2]^T \).
For \(\lambda = 3\):
Rows imply \( 2x_1 - 4x_2 = 0 \Rightarrow x_1 = 2x_2 \) and \( 5x_1 - 6x_2 + 2x_3 = 0 \).
Sub \( x_1 \): \( 10x_2 - 6x_2 + 2x_3 = 0 \Rightarrow 4x_2 = -2x_3 \Rightarrow x_3 = -2x_2 \).
Let \( x_2 = 1 \). \( X_2 = [2, 1, -2]^T \).
For \(\lambda = 15\):
Cross multiplication on \( -7x_1 - 6x_2 + 2x_3 = 0 \) and \( x_1 - 2x_2 - 6x_3 = 0 \) (simplified R3):
\( \frac{x_1}{36+4} = \frac{x_2}{2-42} = \frac{x_3}{14+6} \Rightarrow \frac{x_1}{40} = \frac{x_2}{-40} = \frac{x_3}{20} \)
\( X_3 = [2, -2, 1]^T \).
Step 3: Normalize Eigenvectors.
\( |X_1| = \sqrt{1+4+4} = 3 \)
\( |X_2| = \sqrt{4+1+4} = 3 \)
\( |X_3| = \sqrt{4+4+1} = 3 \)
Normalized Matrix N:
$$ N = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} $$
Reduce the quadratic form \( x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3 \) to canonical form and find its nature.
Step 1: Matrix A.
$$ A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} $$
Step 2: Eigenvalues.
\( S_1 = 4 \), \( S_2 = (2-1) + (1-0) + (2-1) = 3 \), \( S_3 = 1(1) - (-1)(-1) = 1 - 1 = 0 \).
Eq: \( \lambda^3 - 4\lambda^2 + 3\lambda = 0 \Rightarrow \lambda(\lambda-1)(\lambda-3) = 0 \).
Eigenvalues: 0, 1, 3.
Step 3: Canonical Form.
Obtain an orthogonal transformation which will transform the quadratic form \( Q = 2xy + 2yz + 2xz \) to canonical form.
Step 1: Matrix A.
$$ A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} $$
Step 2: Eigenvalues.
\( S_1 = 0 \), \( S_2 = -3 \), \( S_3 = 2 \).
Eq: \( \lambda^3 - 3\lambda - 2 = 0 \).
Roots: \( (\lambda-2)(\lambda+1)^2 = 0 \).
Eigenvalues: 2, -1, -1.
Step 3: Eigenvectors.
Case 1: \(\lambda = 2\)
\( -2x + y + z = 0 \) and \( x - 2y + z = 0 \). Cross multiply: \( x/3 = y/3 = z/3 \).
\( X_1 = [1, 1, 1]^T \).
Case 2: \(\lambda = -1\) (Repeated)
The equation reduces to single form \( x + y + z = 0 \).
Let \( X_2 = [1, -1, 0]^T \) (satisfies eq).
To find \( X_3 \), it must be orthogonal to \( X_1 \) and \( X_2 \).
\( X_3 = [l, m, n]^T \).
1. \( l+m+n = 0 \)
2. \( l-m = 0 \Rightarrow l=m \)
Sub into 1: \( 2l + n = 0 \Rightarrow n = -2l \). Let \( l=1 \).
\( X_3 = [1, 1, -2]^T \).
Step 4: Normalize.
\( |X_1| = \sqrt{3} \), \( |X_2| = \sqrt{2} \), \( |X_3| = \sqrt{6} \).
Diagonalise the symmetric matrix by Orthogonality transformation: $$ A = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix} $$
Step 1: Eigenvalues.
\( |A-\lambda I| = (6-\lambda)[(2-\lambda)^2 - 16] = 0 \)
\( (6-\lambda)(\lambda^2 - 4\lambda - 12) = 0 \)
\( (6-\lambda)(\lambda-6)(\lambda+2) = 0 \)
Eigenvalues: 6, 6, -2.
Step 2: Eigenvectors.
Case 1: \(\lambda = -2\)
\( 4x_1 + 4x_3 = 0 \Rightarrow x_1 = -x_3 \), \( 8x_2 = 0 \Rightarrow x_2 = 0 \).
\( X_1 = [-1, 0, 1]^T \).
Case 2: \(\lambda = 6\) (Repeated)
\( -4x_1 + 4x_3 = 0 \Rightarrow x_1 = x_3 \). \( x_2 \) is free.
We need two orthogonal vectors satisfying \( x_1 = x_3 \).
Let \( X_2 = [0, 1, 0]^T \) (x2=1, x1=x3=0).
Let \( X_3 = [1, 0, 1]^T \) (x2=0, x1=x3=1).
Check orthogonality: \( X_2 \cdot X_3 = 0 \). Correct.
Step 3: Normalize and Form N.
\( |X_1| = \sqrt{2} \), \( |X_2| = 1 \), \( |X_3| = \sqrt{2} \).
$$ N = \begin{bmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} $$