Evaluate ∫C (3z2+7z+1)/(z+1) dz where C is |z|=1/2.
Step 1: Identify the function and singularity.
The integrand is f(z) / (z-a) where f(z) = 3z2+7z+1 and a = -1.
The singularity is at z = -1.
Step 2: Locate the singularity relative to the contour.
The contour C is the circle |z| = 1/2, which is a circle centered at the origin (0,0) with a radius of 0.5.
The singularity z = -1 is at a distance of |-1| = 1 from the origin.
Since 1 > 1/2, the singularity z = -1 lies outside the contour C.
Step 3: Apply Cauchy's Integral Theorem.
The function (3z2+7z+1)/(z+1) is analytic everywhere inside the contour C.
By Cauchy's Integral Theorem, if a function is analytic everywhere inside and on a closed contour, the integral around that contour is zero.
Using Cauchy's integral formula, evaluate ∫C z/(z-2) dz where C is |z-2|=3/2.
Step 1: Identify f(z), singularity, and contour.
This is in the form ∫ f(z)/(z-a) dz.
f(z) = z
Singularity: a = 2
Contour C: |z-2|=3/2. This is a circle centered at z=2 with a radius of 1.5.
Step 2: Locate the singularity.
The singularity a = 2 is at the center of the contour, so it is inside C.
Step 3: Apply Cauchy's Integral Formula.
Cauchy's Integral Formula states: ∫C f(z)/(z-a) dz = 2πi · f(a).
Here, a = 2 and f(z) = z, so f(a) = f(2) = 2.
Integral = 2πi · f(2) = 2πi · (2)
Evaluate ∫C (sin(πz2)+cos(πz2))/((z-1)(z-2)) dz where C is |z|=3.
Step 1: Identify f(z), singularities, and contour.
f(z) = sin(πz2) + cos(πz2)
Singularities are at z = 1 and z = 2.
Contour C: |z|=3. This is a circle centered at the origin with radius 3.
Both singularities (z=1 and z=2) are inside the contour.
Step 2: Use Partial Fractions.
1/((z-1)(z-2)) = A/(z-1) + B/(z-2)
1 = A(z-2) + B(z-1)
Step 3: Apply Cauchy's Integral Formula to both parts.
Integral = -∫C f(z)/(z-1) dz + ∫C f(z)/(z-2) dz
Integral = -[ 2πi · f(1) ] + [ 2πi · f(2) ] = 2πi · [f(2) - f(1)]
f(1) = sin(π(1)2) + cos(π(1)2) = sin(π) + cos(π) = 0 - 1 = -1
f(2) = sin(π(2)2) + cos(π(2)2) = sin(4π) + cos(4π) = 0 + 1 = 1
Result = 2πi · [1 - (-1)] = 2πi · (2)
Using Cauchy's integral formula evaluate ∫C (4-3z)/(z(z-1)(z-2)) dz where C is the circle |z|=3/2.
Step 1: Identify singularities and contour.
Singularities are at z = 0, z = 1, and z = 2.
Contour C: |z|=3/2 = 1.5.
Singularities inside C: z = 0, z = 1.
Singularity outside C: z = 2.
Step 2: Reformulate the integral.
We must group the "outside" singularity with f(z).
Let f(z) = (4-3z) / (z-2).
The integral becomes: ∫C f(z) / (z(z-1)) dz
Step 3: Use Partial Fractions on the remaining denominator.
1/(z(z-1)) = A/z + B/(z-1)
1 = A(z-1) + B(z)
Step 4: Apply Cauchy's Integral Formula.
Integral = -[ 2πi · f(0) ] + [ 2πi · f(1) ] = 2πi · [f(1) - f(0)]
f(0) = (4 - 3(0)) / (0 - 2) = 4 / -2 = -2
f(1) = (4 - 3(1)) / (1 - 2) = 1 / -1 = -1
Result = 2πi · [-1 - (-2)] = 2πi · (1)
Find the Taylor's series for f(z)=sin z about z=π/4.
Step 1: State the Taylor's series formula.
f(z) = f(a) + f'(a)(z-a)/1! + f''(a)(z-a)2/2! + f'''(a)(z-a)3/3! + ...
Here, a = π/4.
Step 2: Find the derivatives and evaluate at a = π/4.
Step 3: Substitute the values into the formula.
sin z = (1/√2) + (1/√2)(z-π/4)/1! - (1/√2)(z-π/4)2/2! - (1/√2)(z-π/4)3/3! + ...
Obtain the Taylor's series to represent the function 1/((z+2)(z+3)) in the region |z| < 2.
Step 1: Use Partial Fractions.
f(z) = 1/((z+2)(z+3)) = A/(z+2) + B/(z+3)
1 = A(z+3) + B(z+2)
Step 2: Rearrange terms for the region |z| < 2.
The region |z| < 2 implies |z/2| < 1 and |z/3| < 1. We must use the (1+r)-1 form.
Term 1: 1/(z+2) = 1 / (2(1 + z/2)) = (1/2) · (1 + z/2)-1
Term 2: -1/(z+3) = -1 / (3(1 + z/3)) = (-1/3) · (1 + z/3)-1
Step 3: Expand using the geometric series (1+r)-1 = 1 - r + r2 - ... = Σ (-1)nrn.
Term 1 = (1/2) Σn=0∞ (-1)n (z/2)n = Σn=0∞ (-1)n zn / 2n+1
Term 2 = (-1/3) Σn=0∞ (-1)n (z/3)n = Σn=0∞ (-1)n+1 zn / 3n+1
Step 4: Combine the series.
f(z) = Σn=0∞ [ (-1)n / 2n+1 + (-1)n+1 / 3n+1 ] zn
f(z) = Σn=0∞ (-1)n [ 1/2n+1 - 1/3n+1 ] zn
Expand f(z)=(z2-1)/((z+2)(z+3)) as a Laurent's series if 2 < |z|.
Note: The region 2 < |z| contains the singularity z=-3, making a Laurent expansion invalid. We will assume the intended region was 2 < |z| < 3, a valid annulus for this function.
Step 1: Use Long Division and Partial Fractions.
First, divide (z2-1) by (z2+5z+6) (which is (z+2)(z+3)).
(z2-1) / (z2+5z+6) = 1 + (-5z-7) / (z2+5z+6)
Now use partial fractions on the remainder:
(-5z-7) / ((z+2)(z+3)) = A/(z+2) + B/(z+3)
-5z-7 = A(z+3) + B(z+2)
Step 2: Rearrange for the region 2 < |z| < 3.
This region means |z| > 2 (so |2/z| < 1) and |z| < 3 (so |z/3| < 1).
Term 1: 1 (this is already a valid series)
Term 2: 3/(z+2). Since |z| > 2, we factor out z:
3 / (z(1 + 2/z)). Use (1+r)-1 with r = 2/z.
= (3/z) · (1 - 2/z + (2/z)2 - ...) = Σn=0∞ 3 · (-1)n · 2n / zn+1
Term 3: -8/(z+3). Since |z| < 3, we factor out 3:
-8 / (3(1 + z/3)). Use (1+r)-1 with r = z/3.
= (-8/3) · (1 - z/3 + (z/3)2 - ...) = Σn=0∞ (-8/3) · (-1)n · (z/3)n
(i) Test whether the function f(z)=z2 is analytic or not.
(ii) Prove that f(z)=ez is analytic and find its derivative.
Part (i): f(z) = z2
Let z = x + iy.
f(z) = (x+iy)2 = (x2 - y2) + i(2xy)
Here, u(x,y) = x2 - y2 and v(x,y) = 2xy.
Check Cauchy-Riemann (C-R) equations:
1. ∂u/∂x = 2x
2. ∂v/∂y = 2x
⇒ ∂u/∂x = ∂v/∂y
3. ∂u/∂y = -2y
4. ∂v/∂x = 2y
⇒ ∂u/∂y = -∂v/∂x
Since the C-R equations are satisfied for all (x,y) and the partial derivatives are continuous everywhere, f(z)=z2 is analytic everywhere (entire).
Part (ii): f(z) = ez
Let z = x + iy.
f(z) = ex+iy = ex · eiy = ex(cos y + i sin y)
Here, u(x,y) = excos y and v(x,y) = exsin y.
Check C-R equations:
1. ∂u/∂x = excos y
2. ∂v/∂y = excos y
⇒ ∂u/∂x = ∂v/∂y
3. ∂u/∂y = -exsin y
4. ∂v/∂x = exsin y
⇒ ∂u/∂y = -∂v/∂x
Since the C-R equations are satisfied for all (x,y) and the partial derivatives are continuous everywhere, f(z)=ez is analytic everywhere (entire).
Derivative: f'(z) = ∂u/∂x + i ∂v/∂x
f'(z) = (excos y) + i(exsin y) = ex(cos y + i sin y) = ez.
(i) Find the constants a, b, c if f(z)=x+ay+i(bx+cy) is analytic.
(ii) If f(z) is an analytic function of z, prove that (∂2/∂x2 + ∂2/∂y2)|f(z)|2 = 4|f'(z)|2.
Part (i): C-R Equations
f(z) = u + iv, where u = x + ay and v = bx + cy.
For f(z) to be analytic, it must satisfy the C-R equations.
1. ∂u/∂x = ∂v/∂y
∂/∂x(x + ay) = ∂/∂y(bx + cy)
1 = c
2. ∂u/∂y = -∂v/∂x
∂/∂y(x + ay) = -∂/∂x(bx + cy)
a = -b
Part (ii): Proof
Let |f(z)|2 = u2 + v2. The operator (∂2/∂x2 + ∂2/∂y2) is the Laplacian ∇2.
LHS = ∇2(u2 + v2)
∂/∂x (u2 + v2) = 2u(∂u/∂x) + 2v(∂v/∂x)
∂2/∂x2 (u2 + v2) = 2 [ (∂u/∂x)2 + u(∂2u/∂x2) + (∂v/∂x)2 + v(∂2v/∂x2) ]
By symmetry (swapping x and y):
∂2/∂y2 (u2 + v2) = 2 [ (∂u/∂y)2 + u(∂2u/∂y2) + (∂v/∂y)2 + v(∂2v/∂y2) ]
Adding these two expressions gives the LHS:
LHS = 2 [ (∂u/∂x)2 + (∂u/∂y)2 + (∂v/∂x)2 + (∂v/∂y)2 + u(∇2u) + v(∇2v) ]
Since f(z) is analytic, u and v are harmonic, which means ∇2u = 0 and ∇2v = 0.
LHS = 2 [ (∂u/∂x)2 + (∂u/∂y)2 + (∂v/∂x)2 + (∂v/∂y)2 ]
Now apply C-R equations: ∂u/∂y = -∂v/∂x and ∂v/∂y = ∂u/∂x
LHS = 2 [ (∂u/∂x)2 + (-∂v/∂x)2 + (∂v/∂x)2 + (∂u/∂x)2 ]
LHS = 2 [ 2(∂u/∂x)2 + 2(∂v/∂x)2 ] = 4 [ (∂u/∂x)2 + (∂v/∂x)2 ]
RHS = 4|f'(z)|2
f'(z) = ∂u/∂x + i ∂v/∂x
|f'(z)|2 = (∂u/∂x)2 + (∂v/∂x)2
RHS = 4 [ (∂u/∂x)2 + (∂v/∂x)2 ]
Since LHS = RHS, the identity is proved.
If u = sin(2x) / (cosh(2y)+cos(2x)) find the corresponding analytic function f(z)=u+iv.
Step 1: Relate the expression to a known complex function.
Consider the function g(z) = tan(z).
tan(z) = sin(z)/cos(z) = sin(x+iy) / cos(x+iy)
tan(z) = (sin(x)cosh(y) + i cos(x)sinh(y)) / (cos(x)cosh(y) - i sin(x)sinh(y))
Step 2: Rationalize the denominator.
Multiply numerator and denominator by the conjugate of the denominator, (cos(x)cosh(y) + i sin(x)sinh(y)).
Denominator = cos2(x)cosh2(y) + sin2(x)sinh2(y)
= cos2(x)cosh2(y) + (1-cos2(x))(cosh2(y)-1)
= cos2(x)cosh2(y) + cosh2(y) - 1 - cos2(x)cosh2(y) + cos2(x)
= cosh2(y) + cos2(x) - 1 = ( (1+cosh(2y))/2 ) + ( (1+cos(2x))/2 ) - 1
= (1/2) [ cosh(2y) + cos(2x) ]
Numerator (Real Part) = (sin x cosh y)(cos x cosh y) - (cos x sinh y)(sin x sinh y)
= sin(x)cos(x) [ cosh2(y) - sinh2(y) ]
= (1/2)sin(2x) · (1) = (1/2)sin(2x)
Step 3: Find the real part, u.
u = Real(tan(z)) = (Numerator Real Part) / Denominator
u = ( (1/2)sin(2x) ) / ( (1/2)(cosh(2y) + cos(2x)) )
u = sin(2x) / (cosh(2y) + cos(2x))
Step 4: Conclude the function.
This perfectly matches the given 'u'.
Therefore, the analytic function is f(z) = tan(z) + C (where C is a real constant, or Ci for an imaginary constant).
(i) Show that v = e-2y(y cos(2x) + x sin(2x)) is harmonic and find f(z).
(ii) Find the analytic function w=u+iv where u = (1/2)log(x2+y2).
Part (i): Harmonic Check and Milne-Thomson
1. Check if v is harmonic (vxx + vyy = 0):
∂v/∂x = e-2y(-2y sin(2x) + sin(2x) + 2x cos(2x))
∂2v/∂x2 = e-2y(-4y cos(2x) + 2cos(2x) + 2cos(2x) - 4x sin(2x))
∂2v/∂x2 = e-2y(4cos(2x) - 4y cos(2x) - 4x sin(2x))
∂v/∂y = e-2y(cos(2x)) - 2e-2y(y cos(2x) + x sin(2x))
∂v/∂y = e-2y(cos(2x) - 2y cos(2x) - 2x sin(2x))
∂2v/∂y2 = e-2y(-2cos(2x)) - 2e-2y(cos(2x) - 2y cos(2x) - 2x sin(2x))
∂2v/∂y2 = e-2y(-4cos(2x) + 4y cos(2x) + 4x sin(2x))
Adding them: vxx + vyy = e-2y [ (4cos 2x - 4y cos 2x - 4x sin 2x) + (-4cos 2x + 4y cos 2x + 4x sin 2x) ] = 0.
Yes, v is harmonic.
2. Find f(z) using Milne-Thomson:
f'(z) = ∂u/∂x + i ∂v/∂x = ∂v/∂y + i ∂v/∂x
Replace x=z, y=0:
∂v/∂y(z,0) = e0(cos(2z) - 0 - 2z sin(2z)) = cos(2z) - 2z sin(2z)
∂v/∂x(z,0) = e0(0 + sin(2z) + 2z cos(2z)) = sin(2z) + 2z cos(2z)
f'(z) = (cos(2z) - 2z sin(2z)) + i(sin(2z) + 2z cos(2z))
f'(z) = (cos(2z) + i sin(2z)) + 2iz cos(2z) - 2z sin(2z)
f'(z) = ei2z + 2iz (cos(2z) + i sin(2z)) (since -1 = i2)
f'(z) = ei2z + 2iz (ei2z) = (1 + 2iz)ei2z
This is the derivative of (z · ei2z) by the product rule.
f(z) = ∫ (1 + 2iz)ei2z dz = z ei2z + C
Part (ii): f(z) from u
u = (1/2)log(x2+y2).
In polar coordinates, z = reiθ, x2+y2 = r2.
u = (1/2)log(r2) = log(r).
We know the analytic function f(z) = log(z) is defined as:
log(z) = log(reiθ) = log(r) + log(eiθ) = log(r) + iθ
The real part (u) of log(z) is log(r), which matches the given u.
(i) If u+v = (2sin(2x)) / (e2y+e-2y-2cos(2x)) and f(z)=u+iv is an analytic function, find f(z).
(ii) Find the bilinear map which maps the points z=0,-1,i onto the points w=1,0,∞.
Part (i): Analytic Function from u+v
1. Simplify the given expression V = u+v.
e2y+e-2y = 2cosh(2y)
V = u+v = 2sin(2x) / (2cosh(2y) - 2cos(2x)) = sin(2x) / (cosh(2y) - cos(2x))
2. Relate V to a known function.
Consider g(z) = cot(z) = cos(z)/sin(z)
cot(z) = (cos(x+iy)) / (sin(x+iy)) = (cos x cosh y - i sin x sinh y) / (sin x cosh y + i cos x sinh y)
Multiply by the conjugate (sin x cosh y - i cos x sinh y):
Denominator = sin2x cosh2y + cos2x sinh2y = (1/2)(cosh(2y) - cos(2x))
Numerator (Real part) = (cos x cosh y)(sin x cosh y) + (sin x sinh y)(cos x sinh y)
= (sin x cos x)(cosh2y + sinh2y) = (1/2)sin(2x)(cosh(2y))
Numerator (Imaginary part) = ... = -(1/2)sinh(2y)
So, cot(z) = ( (1/2)sin 2x cosh 2y ) / ( (1/2)(cosh 2y - cos 2x) ) + i · ( -(1/2)sinh 2y ) / ( (1/2)(cosh 2y - cos 2x) )
The real part of cot(z) is ucot = sin(2x)cosh(2y) / (cosh(2y) - cos(2x)).
The imaginary part of cot(z) is vcot = -sinh(2y) / (cosh(2y) - cos(2x)).
Our given V = u+v = sin(2x) / (cosh(2y) - cos(2x)). This is not ucot or vcot.
3. Use the F(z) = (1+i)f(z) method.
Let F(z) = U + iV = (1+i)f(z) = (1+i)(u+iv) = (u-v) + i(u+v).
We are given V = u+v. So, V = sin(2x) / (cosh(2y) - cos(2x)).
This V is exactly the real part of cot(z) (ucot), *except* for the cosh(2y) term in the numerator.
There is a high probability of a typo in the question. The standard problem V = u+v = (sin 2x - sinh 2y) / (cosh 2y - cos 2x) leads to f(z) = (1/2)(1+i)cot(z). Assuming the question intended V = sin(2x) / (cosh(2y) - cos(2x)), which is ucot.
Assuming V = ucot:
Part (ii): Bilinear Map
z1=0, z2=-1, z3=i
w1=1, w2=0, w3=∞
Use the cross-ratio formula: (w-w1)(w2-w3) / ((w-w3)(w2-w1)) = (z-z1)(z2-z3) / ((z-z3)(z2-z1))
Since w3=∞, the (w2-w3) / (w-w3) part simplifies to -1.
LHS = (w - w1) / (-1 · (w2-w1)) = (w - 1) / (-(0 - 1)) = (w - 1) / 1 = w - 1.
RHS = (z - 0)(-1 - i) / ((z - i)(-1 - 0)) = z(-1-i) / (-(z-i)) = z(1+i) / (z-i)
Equating: w - 1 = z(1+i) / (z-i)
w = 1 + z(1+i) / (z-i) = ( (z-i) + z(1+i) ) / (z-i)
w = (z - i + z + zi) / (z-i) = (2z + zi - i) / (z-i)
(Note: Q12 in the PDF also mentions finding the image of the unit circle, which is solved in Q13.)
(i) Evaluate ∫C (z+4)/(z2+2z+5) dz where C is |z+1+i|=2 and |z+1|=1.
(ii) Evaluate ∫C (z+1)/(z2+2z+4)2 dz where C is |z+1+i|=2.
Part (i): Cauchy's Formula
Singularities of z2+2z+5=0 are z = [-2 ± √(4-20)]/2 = -1 ± 2i.
Let a = -1+2i and b = -1-2i.
Contour 1: C1 is |z+1+i|=2. (Center: -1-i, Radius: 2)
Distance to a: |-1+2i + 1+i| = |3i| = 3. (Outside C1)
Distance to b: |-1-2i + 1+i| = |-i| = 1. (Inside C1)
Rewrite integral: ∫C1 [ (z+4)/(z-a) ] / (z-b) dz
Let f(z) = (z+4)/(z-a) = (z+4)/(z+1-2i).
By CIF: 2πi · f(b) = 2πi · f(-1-2i)
= 2πi · ((-1-2i)+4) / ((-1-2i) - (-1+2i))
= 2πi · (3-2i) / (-4i) = (-π/2) · (3-2i) = -3π/2 + πi
Contour 2: C2 is |z+1|=1. (Center: -1, Radius: 1)
Distance to a: |-1+2i + 1| = |2i| = 2. (Outside C2)
Distance to b: |-1-2i + 1| = |-2i| = 2. (Outside C2)
Since both singularities are outside C2, the integrand is analytic inside.
By Cauchy's Theorem, the integral is 0.
Part (ii): Cauchy's Formula for Derivatives
Singularities of (z2+2z+4)2=0 are z = [-2 ± √(4-16)]/2 = -1 ± i√3.
Let a = -1+i√3 and b = -1-i√3.
Contour C: |z+1+i|=2. (Center: -1-i, Radius: 2)
Distance to a: |-1+i√3 + 1+i| = |i(1+√3)| ≈ 2.73. (Outside C)
Distance to b: |-1-i√3 + 1+i| = |i(1-√3)| = √3-1 ≈ 0.73. (Inside C)
Rewrite integral: ∫C [ (z+1)/(z-a)2 ] / (z-b)2 dz
Let f(z) = (z+1)/(z-a)2. The integral is ∫ f(z)/(z-b)2 dz.
This matches the formula ∫ f(z)/(z-a)n+1 dz = 2πi/n! · f(n)(a), with n=1.
Result = 2πi/1! · f'(b).
f'(z) = d/dz [ (z+1) / (z-a)2 ]
f'(z) = [ 1(z-a)2 - (z+1)2(z-a) ] / (z-a)4
f'(z) = [ (z-a) - 2(z+1) ] / (z-a)3 = (-z - a - 2) / (z-a)3
Evaluate f'(b):
Numerator: -b - a - 2 = -(-1-i√3) - (-1+i√3) - 2 = (1+i√3 + 1-i√3) - 2 = 2 - 2 = 0.
Since the numerator is 0, f'(b) = 0.
Find the Taylor's series to represent the function (2z-1)/((z+2)(z+3)) in |z|<2.
Step 1: Use Partial Fractions.
f(z) = (2z-1)/((z+2)(z+3)) = A/(z+2) + B/(z+3)
2z-1 = A(z+3) + B(z+2)
Step 2: Rearrange for the region |z| < 2.
The region |z| < 2 implies |z/2| < 1 and |z/3| < 1.
Term 1: 7/(z+3) = 7 / (3(1 + z/3)) = (7/3) · (1 + z/3)-1
Term 2: -5/(z+2) = -5 / (2(1 + z/2)) = (-5/2) · (1 + z/2)-1
Step 3: Expand using the geometric series Σ (-1)nrn.
Term 1 = (7/3) Σn=0∞ (-1)n (z/3)n = Σn=0∞ 7 · (-1)n · zn / 3n+1
Term 2 = (-5/2) Σn=0∞ (-1)n (z/2)n = Σn=0∞ -5 · (-1)n · zn / 2n+1
Step 4: Combine the series.
f(z) = Σn=0∞ [ (7 · (-1)n / 3n+1) - (5 · (-1)n / 2n+1) ] zn
f(z) = Σn=0∞ (-1)n [ 7/3n+1 - 5/2n+1 ] zn
(i) Expand 1/(z2-3z+2) in the region (a) 1 < |z| < 2 and (b) 0 < |z-1| < 1.
(ii) Expand 1/((z+1)(z+3)) in Laurent's series valid for the regions 1 < |z| < 3 and |z| > 3.
Part (i): f(z) = 1/((z-1)(z-2))
Partial Fractions: 1/((z-1)(z-2)) = 1/(z-2) - 1/(z-1)
(a) Region 1 < |z| < 2:
This means |z| > 1 (so |1/z| < 1) and |z| < 2 (so |z/2| < 1).
Term 1: 1/(z-2) = 1 / (-2(1 - z/2)) = (-1/2) · (1 - z/2)-1 = (-1/2) Σn=0∞ (z/2)n
Term 2: -1/(z-1) = -1 / (z(1 - 1/z)) = (-1/z) · (1 - 1/z)-1 = (-1/z) Σn=0∞ (1/z)n
f(z) = - Σn=0∞ zn/2n+1 - Σn=0∞ z-(n+1)
(b) Region 0 < |z-1| < 1 (Annulus centered at z=1):
Let w = z-1. Then z = w+1. The region is 0 < |w| < 1.
f(z) = 1/((w+1)-2) - 1/w = 1/(w-1) - 1/w
Term 1: -1/w (This is already a valid series in w)
Term 2: 1/(w-1) = 1 / (-(1-w)) = -1 · (1-w)-1 = - Σn=0∞ wn
f(z) = -1/(z-1) - Σn=0∞ (z-1)n
Part (ii): f(z) = 1/((z+1)(z+3))
Partial Fractions: f(z) = (1/2)/(z+1) - (1/2)/(z+3)
(a) Region 1 < |z| < 3:
This means |z| > 1 (so |1/z| < 1) and |z| < 3 (so |z/3| < 1).
Term 1: (1/2)/(z+1) = (1/2) / (z(1 + 1/z)) = (1/2z) Σn=0∞ (-1)n(1/z)n
Term 2: -(1/2)/(z+3) = (-1/2) / (3(1 + z/3)) = (-1/6) Σn=0∞ (-1)n(z/3)n
f(z) = Σn=0∞ ((-1)n/2)z-(n+1) - Σn=0∞ ((-1)n/6)(z/3)n
(b) Region |z| > 3:
This means |z| > 3 (so |3/z| < 1) and |z| > 1 (so |1/z| < 1).
Term 1: (1/2)/(z+1) = (1/2) / (z(1 + 1/z)) = (1/2z) Σn=0∞ (-1)n(1/z)n
Term 2: -(1/2)/(z+3) = (-1/2) / (z(1 + 3/z)) = (-1/2z) Σn=0∞ (-1)n(3/z)n
f(z) = (1/2z) [ Σ (-1)n(1/z)n - Σ (-1)n(3/z)n ]
f(z) = Σn=0∞ (1/2)(-1)n(1 - 3n)z-(n+1)