🧮 Unit 3 – Part A (2-Mark Q&A)

Engineering Mathematics

⬅ Back to Unit 3

Ad Space

Part A: 2-Mark Questions

QB. 1: Evaluate ∫0π/2 Cos13x dx

Sol: Here, n=13 is odd.
0π/2 cosnx dx = (n-1)/n · (n-3)/(n-2) · (n-5)/(n-4) ··· 2/3
0π/2 cos13x dx = (12/13) · (10/11) · (8/9) · (6/7) · (4/5) · (2/3)
= (12 · 10 · 8 · 6 · 4 · 2) / (13 · 11 · 9 · 7 · 5 · 3 · 1)
= (4 · 2 · 8 · 2 · 4 · 2) / (13 · 11 · 3 · 7)
= (8 · 16 · 8) / (143 · 21)
= 1024 / 3003

QB. 2: Evaluate ∫0π/2 sin6x dx

Sol Here, n=6 is even.
0π/2 sinnx dx = (n-1)/n · (n-3)/(n-2) · (n-5)/(n-4) ··· 1/2 · π/2
0π/2 sin6x dx = (6-1)/6 · (6-3)/(6-2) · (6-5)/(6-4) · π/2
0π/2 sin6x dx = 5/6 · 3/4 · 1/2 · π/2 = 5π/32

QB. 3: Prove that ∫0a f(x)dx = ∫0a f(a-x)dx

Sol: Let RHS = ∫0a f(a-x)dx.
Let u = a-x
du/dx = -1 ⇒ du = -dx ⇒ dx = -du
Limits: x | 0 | a
        u | a | 0
RHS = -∫a0 f(u)du
{·: ∫ba f(x)dx = -∫ab f(x)dx}
RHS = ∫0a f(u)du
RHS = ∫0a f(x)dx = LHS

QB. 4: Given that ∫010 f(x)dx = 17 and ∫08 f(x)dx = 12, then, find ∫810 f(x)dx.

Sol:
08 f(x)dx + ∫810 f(x)dx = ∫010 f(x)dx.
810 f(x)dx = ∫010 f(x)dx - ∫08 f(x)dx = 17 - 12 = 5

QB. 5: ∫03 1/√x dx

Sol: ∫03 1/√x dx = ∫03 1/x1/2 dx = ∫03 x-1/2 dx.
03 1/√x dx = [x1/2 / (1/2)]03 = [2√x]03 = 2√3 - 0 = 2√3

QB. 6: If f is continuous and ∫04 f(x)dx = 10, find ∫02 f(2x)dx.

Sol: Let u = 2x
du/dx = 2 ⇒ 2dx = du ⇒ dx = 1/2 du
Limit: x | 0 | 2
       u | 0 | 4
02 f(2x)dx = 1/2 ∫04 f(u)du = 1/2 × 10 = 5

QB. 7: ∫ √(a2-x2) dx

Sol: Let x = a sinθ then, dx/dθ = a cosθ ⇒ dx = a cosθ dθ
sinθ = x/a ⇒ θ = sin-1(x/a)
∫ √(a2-x2) dx = ∫ √(a2-a2sin2θ) · a cosθ dθ
= ∫ √(a2(1-sin2θ)) · a cosθ dθ
= ∫ √(a2cos2θ) · a cosθ dθ
= ∫ (a cosθ)(a cosθ) dθ
= ∫ a2cos2θ dθ
= a2 ∫ ( (1+cos 2θ)/2 ) dθ
= (a2/2) ∫ (1+cos 2θ) dθ
= (a2/2) [ ∫ dθ + ∫ cos 2θ dθ ]
= (a2/2) [θ + (sin 2θ)/2]
{·: sin 2θ = 2 sinθ cosθ}
= (a2/2) [θ + sinθ cosθ]
= (a2/2) [sin-1(x/a) + (x/a) √(1-sin2θ)]
= (a2/2) [sin-1(x/a) + (x/a) √(1-x2/a2)]
∫ √(a2-x2) dx = (a2/2) [sin-1(x/a) + (x/a)(1-x2/a2)1/2]

Q. 8.8: Evaluate ∫ (tan x) / (sec x + cos x) dx

Sol: ∫ (tan x) / (sec x + cos x) dx = ∫ (sin x / cos x) / (1/cos x + cos x) dx
= ∫ (sin x / cos x) · (cos x / (1+cos2x)) dx
= ∫ (sin x) / (1+cos2x) dx
Let u = cos x ⇒ du/dx = -sin x ⇒ -du = sin x dx
= -∫ du / (1+u2) = -∫ 1 / (1+u2) du.
= -tan-1(u)
∫ (tan x) / (sec x + cos x) dx = -tan-1(cos x)

QB. 9: ∫-12 (x2-2x)dx is

Sol: ∫-12 (x2-2x)dx = ∫-12 x2dx - 2∫-12 x dx.
= [x3/3]-12 - 2[x2/2]-12
= (8/3 - (-1/3)) - 2(4/2 - 1/2)
= (8/3 + 1/3) - 2(3/2)
= 9/3 - 2 x 5/2 = 3 - 5= -2

QB. 10: Evaluate: ∫ 1/x4 dx

Sol: ∫ 1/x4 dx = ∫ x-4 dx = x-4+1 / (-4+1) = x-3 / -3 = -1 / (3x3).

QB. 11/QB. 21: Evaluate ∫010203 [x y2z] dx dy dz.

Sol: I = ∫010203 [x y2z] dx dy dz.
= ∫0102 [x2y2z / 2]03 dy dz = ∫0102 [9y2z / 2] dy dz.
= 9/2 ∫0102 [y2z] dy dz = 9/2 ∫01 [y3z / 3]02 dz.
= 9/2 ∫01 [8z / 3] dz = (9/2) × (8/3) ∫01 z dz
I = 12 [z2/2]01 = 12(1/2) = 6

QB. 12: Evaluate : ∫1213 xy2 dx dy

Sol: I = ∫1213 x y2 dx dy = ∫12 [x2y2 / 2]13 dy
I = ∫12 [9y2/2 - y2/2] dy = ∫12 [8y2/2] dy = ∫12 4y2 dy
I = 4 ∫12 y2 dy = 4[y3/3]12 = 4[8/3 - 1/3] = 4 × (7/3) = 28/3

QB. 13: Evaluate: ∫010203 [x y z] dx dy dz

Sol: I = ∫010203 [x y z] dx dy dz = ∫0102 [x2y z / 2]03 dy dz.
I = ∫0102 [9yz / 2] dy dz = 9/2 ∫0102 [y z] dy dz
I = 9/2 ∫01 [y2z / 2]02 dz = 9/2 ∫01 [4z / 2] dz
I = 9 ∫01 z dz = 9 [z2/2]01 = 9(1/2) = 9/2.

QB. 14: The value of ∫1log 80log y ex+y dx dy is 0. [TRUE/FALSE]

Sol I = ∫1log 80log y ex+y dx dy = ∫1log 80log y ex · ey dx dy
I = ∫1log 8 [ex ey]0log y dy = ∫1log 8 [elog y ey - e0 ey] dy
= ∫1log 8 [y ey - ey] dy = ∫1log 8 y ey dy - ∫1log 8 ey dy
I = ∫1log 8 y ey dy - [ey]1log 8
I = ∫1log 8 y ey dy - [elog 8 - e1] = ∫1log 8 y ey dy - (8 - e)
I1 = ∫1log 8 y ey dy {·: ∫ u dv = uv - ∫ v du}
Let u = y ⇒ du/dy = 1 ⇒ dy = du
∫ dv = ∫ ey dy ⇒ v = ey
I1 = [y ey]1log 8 - ∫1log 8 ey dy = [y ey]1log 8 - [ey]1log 8
I1 = [(log 8)elog 8 - 1e1] - [elog 8 - e1] = [8 log 8 - e] - [8 - e]
I1 = 8 log 8 - 8
I = (8 log 8 - 8) - (8 - e) = 8 log 8 - 16 + e
1log 80log y ex+y dx dy = 8 log 8 - 16 + e

QB. 15: Evaluate ∫1a2b (dx dy) / (xy)

Sol: I = ∫1a2b 1/x · 1/y dx dy = ∫1a (1/y) [log x]2b dy
I = ∫1a (1/y) (log b - log 2) dy = (log b - log 2) ∫1a (1/y) dy
I = (log b - log 2) [log y]1a
I = (log b - log 2) (log a - log 1) = (log a) (log b - log 2)
1a2b (dx dy) / (xy) = (a-1)[log b - log 2]

Ad Space